Home > Articles > Open Source > Python
Qt/C - Lesson 024. Signals and Slot in Qt5. Signals and slots are used for communication between objects. The signals and slots mechanism is a central feature of Qt and probably the part that differs most from the features provided. Example SLOT/SIGNAL between two object QT. Ask Question Asked 2 years, 8 months ago. Here is a simple example of how to emit signals and slots. Browse other questions tagged c qt or ask your own question. Featured on Meta Feedback post: Moderator review and reinstatement processes. Connect Qt QML and C Overview. This program demonstrates how QML and C can be connected through Qt signals and slots. It does this through embedding C code as a context property in QML rather than explicitly connecting signals and slots. When the program is started, the C part send a signal to QML, including a parameter. Signals and Slots in Qt5. Not only you can now use typedef or namespaces properly, but you can also connect signals to slots that take arguments of different types if an implicit conversion is possible. Woboq is a software company that specializes in development and consulting around Qt.
␡Every GUI library provides the details of events that take place, such as mouse clicks and key presses. For example, if we have a button with the text Click Me, and the user clicks it, all kinds of information becomes available. The GUI library can tell us the coordinates of the mouse click relative to the button, relative to the button's parent widget, and relative to the screen; it can tell us the state of the Shift, Ctrl, Alt, and NumLock keys at the time of the click; and the precise time of the click and of the release; and so on. Similar information can be provided if the user 'clicked' the button without using the mouse. The user may have pressed the Tab key enough times to move the focus to the button and then pressed Spacebar, or maybe they pressed Alt+C. Although the outcome is the same in all these cases, each different means of clicking the button produces different events and different information.
The Qt library was the first to recognize that in almost every case, programmers don't need or even want all the low-level details: They don't care how the button was pressed, they just want to know that it was pressed so that they can respond appropriately. For this reason Qt, and therefore PyQt, provides two communication mechanisms: a low-level event-handling mechanism which is similar to those provided by all the other GUI libraries, and a high-level mechanism which Trolltech (makers of Qt) have called 'signals and slots'. We will look at the low-level mechanism in Chapter 10, and again in Chapter 11, but in this section we will focus on the high-level mechanism.
Every QObject—including all of PyQt's widgets since they derive from QWidget, a QObject subclass—supports the signals and slots mechanism. In particular, they are capable of announcing state changes, such as when a checkbox becomes checked or unchecked, and other important occurrences, for example when a button is clicked (by whatever means). All of PyQt's widgets have a set of predefined signals.
Whenever a signal is emitted, by default PyQt simply throws it away! To take notice of a signal we must connect it to a slot. In C++/Qt, slots are methods that must be declared with a special syntax; but in PyQt, they can be any callable we like (e.g., any function or method), and no special syntax is required when defining them.
Most widgets also have predefined slots, so in some cases we can connect a predefined signal to a predefined slot and not have to do anything else to get the behavior we want. PyQt is more versatile than C++/Qt in this regard, because we can connect not just to slots, but also to any callable, and from PyQt 4.2, it is possible to dynamically add 'predefined' signals and slots to QObjects. Let's see how signals and slots works in practice with the Signals and Slots program shown in Figure 4.6.
Both the QDial and QSpinBox widgets have valueChanged() signals that, when emitted, carry the new value. And they both have setValue() slots that take an integer value. We can therefore connect these two widgets to each other so that whichever one the user changes, will cause the other to be changed correspondingly:
Since the two widgets are connected in this way, if the user moves the dial—say to value 20—the dial will emit a valueChanged(20) signal which will, in turn, cause a call to the spinbox's setValue() slot with 20 as the argument. But then, since its value has now been changed, the spinbox will emit a valueChanged(20) signal which will in turn cause a call to the dial's setValue() slot with 20 as the argument. So it looks like we will get an infinite loop. But what happens is that the valueChanged() signal is not emitted if the value is not actually changed. This is because the standard approach to writing value-changing slots is to begin by comparing the new value with the existing one. If the values are the same, we do nothing and return; otherwise, we apply the change and emit a signal to announce the change of state. The connections are depicted in Figure 4.7.
Figure 4.7 The signals and slots connections
Now let's look at the general syntax for connections. We assume that the PyQt modules have been imported using the from .. import * syntax, and that s and w are QObjects, normally widgets, with s usually being self.
The signalSignature is the name of the signal and a (possibly empty) comma-separated list of parameter type names in parentheses. If the signal is a Qt signal, the type names must be the C++ type names, such as int and QString. C++ type names can be rather complex, with each type name possibly including one or more of const, *, and &. When we write them as signal (or slot) signatures we can drop any consts and &s, but must keep any *s. For example, almost every Qt signal that passes a QString uses a parameter type of const QString&, but in PyQt, just using QString alone is sufficient. On the other hand, the QListWidget has a signal with the signature itemActivated(QListWidgetItem*), and we must use this exactly as written.
PyQt signals are defined when they are actually emitted and can have any number of any type of parameters, as we will see shortly.
The slotSignature has the same form as a signalSignature except that the name is of a Qt slot. A slot may not have more arguments than the signal that is connected to it, but may have less; the additional parameters are then discarded. Corresponding signal and slot arguments must have the same types, so for example, we could not connect a QDial's valueChanged(int) signal to a QLineEdit's setText(QString) slot.
In our dial and spinbox example we used the instance.methodName syntax as we did with the example applications shown earlier in the chapter. But when the slot is actually a Qt slot rather than a Python method, it is more efficient to use the SLOT() syntax:
We have already seen that it is possible to connect multiple signals to the same slot. It is also possible to connect a single signal to multiple slots. Although rare, we can also connect a signal to another signal: In such cases, when the first signal is emitted, it will cause the signal it is connected to, to be emitted.
Connections are made using QObject.connect(); they can be broken using QObject.disconnect(). In practice, we rarely need to break connections ourselves since, for example, PyQt will automatically disconnect any connections involving an object that has been deleted.
So far we have seen how to connect to signals, and how to write slots—which are ordinary functions or methods. And we know that signals are emitted to signify state changes or other important occurrences. But what if we want to create a component that emits its own signals? This is easily achieved using QObject.emit(). For example, here is a complete QSpinBox subclass that emits its own custom atzero signal, and that also passes a number:
We connect to the spinbox's own valueChanged() signal and have it call our checkzero() slot. If the value happens to be 0, the checkzero() slot emits the atzero signal, along with a count of how many times it has been zero; passing additional data like this is optional. The lack of parentheses for the signal is important: It tells PyQt that this is a 'short-circuit' signal.
A signal with no arguments (and therefore no parentheses) is a short-circuit Python signal. When such a signal is emitted, any data can be passed as additional arguments to the emit() method, and they are passed as Python objects. This avoids the overhead of converting the arguments to and from C++ data types, and also means that arbitrary Python objects can be passed, even ones which cannot be converted to and from C++ data types. A signal with at least one argument is either a Qt signal or a non-short-circuit Python signal. In these cases, PyQt will check to see whether the signal is a Qt signal, and if it is not will assume that it is a Python signal. In either case, the arguments are converted to C++ data types.
Here is how we connect to the signal in the form's __init__() method:
Again, we must not use parentheses because it is a short-circuit signal. And for completeness, here is the slot it connects to in the form:
If we use the SIGNAL() function with an identifier but no parentheses, we are specifying a short-circuit signal as described earlier. We can use this syntax both to emit short-circuit signals, and to connect to them. Both uses are shown in the example.
If we use the SIGNAL() function with a signalSignature (a possibly empty parenthesized list of comma-separated PyQt types), we are specifying either a Python or a Qt signal. (A Python signal is one that is emitted in Python code; a Qt signal is one emitted from an underlying C++ object.) We can use this syntax both to emit Python and Qt signals, and to connect to them. These signals can be connected to any callable, that is, to any function or method, including Qt slots; they can also be connected using the SLOT() syntax, with a slotSignature. PyQt checks to see whether the signal is a Qt signal, and if it is not it assumes it is a Python signal. If we use parentheses, even for Python signals, the arguments must be convertible to C++ data types.
We will now look at another example, a tiny custom non-GUI class that has a signal and a slot and which shows that the mechanism is not limited to GUI classes—any QObject subclass can use signals and slots.
Both the rate() and the setRate() methods can be connected to, since any Python callable can be used as a slot. If the rate is changed, we update the private __rate value and emit a custom rateChanged signal, giving the new rate as a parameter. We have also used the faster short-circuit syntax. If we wanted to use the standard syntax, the only difference would be that the signal would be written as SIGNAL('rateChanged(float)'). If we connect the rateChanged signal to the setRate() slot, because of the if statement, no infinite loop will occur. Let us look at the class in use. First we will declare a function to be called when the rate changes:
And now we will try it out:
This will cause just one line to be output to the console: 'TaxRate changed to 8.50%'.
In earlier examples where we connected multiple signals to the same slot, we did not care who emitted the signal. But sometimes we want to connect two or more signals to the same slot, and have the slot behave differently depending on who called it. In this section's last example we will address this issue.
The Connections program shown in Figure 4.8, has five buttons and a label. When one of the buttons is clicked the signals and slots mechanism is used to update the label's text. Here is how the first button is created in the form's __init__() method:
All the other buttons are created in the same way, differing only in their variable name and the text that is passed to them.
We will start with the simplest connection, which is used by button1. Here is the __init__() method's connect() call:
We have used a dedicated method for this button:
Connecting a button's clicked() signal to a single method that responds appropriately is probably the most common connection scenario.
But what if most of the processing was the same, with just some parameterization depending on which particular button was pressed? In such cases, it is usually best to connect each button to the same slot. There are two approaches to doing this. One is to use partial function application to wrap a slot with a parameter so that when the slot is invoked it is parameterized with the button that called it. The other is to ask PyQt to tell us which button called the slot. We will show both approaches, starting with partial function application.
Back on page 65 we created a wrapper function which used Python 2.5's functools.partial() function or our own simple partial() function:
Using partial() we can now wrap a slot and a button name together. So we might be tempted to do this:
Unfortunately, this won't work for PyQt versions prior to 4.3. The wrapper function is created in the connect() call, but as soon as the connect() call completes, the wrapper goes out of scope and is garbage-collected. From PyQt 4.3, wrappers made with functools.partial() are treated specially when they are used for connections like this. This means that the function connected to will not be garbage-collected, so the code shown earlier will work correctly.
For PyQt 4.0, 4.1, and 4.2, we can still use partial(): We just need to keep a reference to the wrapper—we will not use the reference except for the connect() call, but the fact that it is an attribute of the form instance will ensure that the wrapper function will not go out of scope while the form exists, and will therefore work. So the connection is actually made like this:
When button2 is clicked, the anyButton() method will be called with a string parameter containing the text 'Two'. Here is what this method looks like:
We could have used this slot for all the buttons using the partial() function that we have just shown. And in fact, we could avoid using partial() at all and get the same results:
Here we've created a lambda function that is parameterized by the button's name. It works the same as the partial() technique, and calls the same anyButton() method, only with lambda being used to create the wrapper.
Both button2callback() and button3callback() call anyButton(); the only difference between them is that the first passes 'Two' as its parameter and the second passes 'Three'.
If we are using PyQt 4.1.1 or later, and we use lambda callbacks, we don't have to keep a reference to them ourselves. This is because PyQt treats lambda specially when used to create wrappers in a connection. (This is the same special treatment that is expected to be extended to functools.partial() in PyQt 4.3.) For this reason we can use lambda directly in connect() calls. For example:
The wrapping technique works perfectly well, but there is an alternative approach that is slightly more involved, but which may be useful in some cases, particularly when we don't want to wrap our calls. This other technique is used to respond to button4 and to button5. Here are their connections:
Notice that we do not wrap the clicked() method that they are both connected to, so at first sight it looks like there is no way to tell which button called the clicked() method.* However, the implementation makes clear that we can distinguish if we want to:
Inside a slot we can always call sender() to discover which QObject the invoking signal came from. (This could be None if the slot was called using a normal method call.) Although we know that we have connected only buttons to this slot, we still take care to check. We have used isinstance(), but we could have used hasattr(button, 'text') instead. If we had connected all the buttons to this slot, it would have worked correctly for them all.
Some programmers don't like using sender() because they feel that it isn't good object-oriented style, so they tend to use partial function application when needs like this arise.
There is actually one other technique that can be used to get the effect of wrapping a function and a parameter. It makes use of the QSignalMapper class, and an example of its use is shown in Chapter 9.
It is possible in some situations for a slot to be called as the result of a signal, and the processing performed in the slot, directly or indirectly, causes the signal that originally called the slot to be called again, leading to an infinite cycle. Such cycles are rare in practice. Two factors help reduce the possibility of cycles. First, some signals are emitted only if a real change takes place. For example, if the value of a QSpinBox is changed by the user, or programmatically by a setValue() call, it emits its valueChanged() signal only if the new value is different from the current value. Second, some signals are emitted only as the result of user actions. For example, QLineEdit emits its textEdited() signal only when the text is changed by the user, and not when it is changed in code by a setText() call.
If a signal–slot cycle does seem to have occurred, naturally, the first thing to check is that the code's logic is correct: Are we actually doing the processing we thought we were? If the logic is right, and we still have a cycle, we might be able to break the cycle by changing the signals that we connect to—for example, replacing signals that are emitted as a result of programmatic changes, with those that are emitted only as a result of user interaction. If the problem persists, we could stop signals being emitted at certain places in our code using QObject.blockSignals(), which is inherited by all QWidget classes and is passed a Boolean—True to stop the object emitting signals and False to resume signalling.
This completes our formal coverage of the signals and slots mechanism. We will see many more examples of signals and slots in practice in almost all the examples shown in the rest of the book. Most other GUI libraries have copied the mechanism in some form or other. This is because the signals and slots mechanism is very useful and powerful, and leaves programmers free to focus on the logic of their applications rather than having to concern themselves with the details of how the user invoked a particular operation.
HomeAll ClassesMain ClassesAnnotatedGrouped ClassesFunctions |
Signals and slots are used for communication between objects. Thesignal/slot mechanism is a central feature of Qt and probably thepart that differs most from other toolkits.
In GUI programming we often want a change in one widget to be notifiedto another widget. More generally, we want objects of any kind to beable to communicate with one another. For example if we were parsingan XML file we might want to notify a list view that we're using torepresent the XML file's structure whenever we encounter a new tag.
Older toolkits achieve this kind of communication using callbacks. Acallback is a pointer to a function, so if you want a processingfunction to notify you about some event you pass a pointer to anotherfunction (the callback) to the processing function. The processingfunction then calls the callback when appropriate. Callbacks have twofundamental flaws. Firstly they are not type safe. We can never becertain that the processing function will call the callback with thecorrect arguments. Secondly the callback is strongly coupled to theprocessing function since the processing function must know whichcallback to call.
An abstract view of some signals and slots connections
In Qt we have an alternative to the callback technique. We use signalsand slots. A signal is emitted when a particular event occurs. Qt'swidgets have many pre-defined signals, but we can always subclass toadd our own. A slot is a function that is called in reponse to aparticular signal. Qt's widgets have many pre-defined slots, but it iscommon practice to add your own slots so that you can handle thesignals that you are interested in.
The signals and slots mechanism is type safe: the signature of asignal must match the signature of the receiving slot. (In fact a slotmay have a shorter signature than the signal it receives because itcan ignore extra arguments.) Since the signatures are compatible, thecompiler can help us detect type mismatches. Signals and slots areloosely coupled: a class which emits a signal neither knows nor careswhich slots receive the signal. Qt's signals and slots mechanismensures that if you connect a signal to a slot, the slot will becalled with the signal's parameters at the right time. Signals andslots can take any number of arguments of any type. They arecompletely typesafe: no more callback core dumps!
All classes that inherit from QObject or one of its subclasses(e.g. QWidget) can contain signals and slots. Signals are emitted byobjects when they change their state in a way that may be interestingto the outside world. This is all the object does to communicate. Itdoes not know or care whether anything is receiving the signals itemits. This is true information encapsulation, and ensures that theobject can be used as a software component.
An example of signals and slots connections
Slots can be used for receiving signals, but they are also normalmember functions. Just as an object does not know if anything receivesits signals, a slot does not know if it has any signals connected toit. This ensures that truly independent components can be created withQt.
You can connect as many signals as you want to a single slot, and asignal can be connected to as many slots as you desire. It is evenpossible to connect a signal directly to another signal. (This willemit the second signal immediately whenever the first is emitted.)
Together, signals and slots make up a powerful component programmingmechanism.
A minimal C++ class declaration might read:
A small Qt class might read:
This class has the same internal state, and public methods to access thestate, but in addition it has support for component programming usingsignals and slots: this class can tell the outside world that its statehas changed by emitting a signal, valueChanged(), and it hasa slot which other objects can send signals to.
All classes that contain signals or slots must mention Q_OBJECT intheir declaration.
Slots are implemented by the application programmer.Here is a possible implementation of Foo::setValue():
The line emit valueChanged(v) emits the signalvalueChanged from the object. As you can see, you emit asignal by using emit signal(arguments).
Here is one way to connect two of these objects together:
Calling a.setValue(79) will make a emit a valueChanged()signal, which b will receive in its setValue() slot,i.e. b.setValue(79) is called. b will then, in turn,emit the same valueChanged() signal, but since no slot has beenconnected to b's valueChanged() signal, nothing happens (thesignal is ignored).
Note that the setValue() function sets the value and emitsthe signal only if v != val. This prevents infinite loopingin the case of cyclic connections (e.g. if b.valueChanged()were connected to a.setValue()).
There were three casinos I played in: Casino Niagara, Fallsview and Seneca. Fallsview and Casino Niagara are part of the same company and offer a convenient shuttle bus between the two.Casino Niagara is a full-service, destination casino, but not nearly as upscale as Fallsview. Is there poker at casino niagra. It was in this sleep-deprived state that I eschewed the shuttle bus and walked the extra mile and a half to Casino Niagara. I was staying across the street from Fallsview and was playing there many hours each day.
A signal is emitted for every connection you make, so if youduplicate a connection, two signals will be emitted. You can alwaysbreak a connection using QObject::disconnect().
This example illustrates that objects can work together without knowingabout each other, as long as there is someone around to set up aconnection between them initially.
The preprocessor changes or removes the signals, slots andemit keywords so that the compiler is presented with standard C++.
Run the moc on class definitions that containsignals or slots. This produces a C++ source file which should be compiledand linked with the other object files for the application. If you useqmake, the makefile rules toautomatically invoke the moc will be added toyour makefile for you.
Signals are emitted by an object when its internal state has changedin some way that might be interesting to the object's client or owner.Only the class that defines a signal and its subclasses can emit thesignal.
A list box, for example, emits both clicked() andcurrentChanged() signals. Most objects will probably only beinterested in currentChanged() which gives the current list itemwhether the user clicked it or used the arrow keys to move to it. Butsome objects may only want to know which item was clicked. If thesignal is interesting to two different objects you just connect thesignal to slots in both objects.
When a signal is emitted, the slots connected to it are executedimmediately, just like a normal function call. The signal/slotmechanism is totally independent of any GUI event loop. Theemit will return when all slots have returned.
If several slots are connected to one signal, the slots will beexecuted one after the other, in an arbitrary order, when the signalis emitted.
Signals are automatically generated by the mocand must not be implemented in the .cpp file. They can never havereturn types (i.e. use void).
A note about arguments. Our experience shows that signals and slotsare more reusable if they do not use special types. If QScrollBar::valueChanged() were to use a special type such as thehypothetical QRangeControl::Range, it could only be connected toslots designed specifically for QRangeControl. Something as simple asthe program in Tutorial #1 part 5would be impossible.
A slot is called when a signal connected to it is emitted. Slots arenormal C++ functions and can be called normally; their only specialfeature is that signals can be connected to them. A slot's argumentscannot have default values, and, like signals, it is rarely wise touse your own custom types for slot arguments.
Since slots are normal member functions with just a little extraspice, they have access rights like ordinary member functions. Aslot's access right determines who can connect to it:
A public slots section contains slots that anyone can connectsignals to. This is very useful for component programming: you createobjects that know nothing about each other, connect their signals andslots so that information is passed correctly, and, like a modelrailway, turn it on and leave it running.
A protected slots section contains slots that this class and itssubclasses may connect signals to. This is intended for slots that arepart of the class's implementation rather than its interface to therest of the world.
A private slots section contains slots that only the class itselfmay connect signals to. This is intended for very tightly connectedclasses, where even subclasses aren't trusted to get the connectionsright.
You can also define slots to be virtual, which we have found quiteuseful in practice.
The signals and slots mechanism is efficient, but not quite as fast as'real' callbacks. Signals and slots are slightly slower because of theincreased flexibility they provide, although the difference for realapplications is insignificant. In general, emitting a signal that isconnected to some slots, is approximately ten times slower thancalling the receivers directly, with non-virtual function calls. Thisis the overhead required to locate the connection object, to safelyiterate over all connections (i.e. checking that subsequent receivershave not been destroyed during the emission) and to marshall anyparameters in a generic fashion. While ten non-virtual function callsmay sound like a lot, it's much less overhead than any 'new' or'delete' operation, for example. As soon as you perform a string,vector or list operation that behind the scene requires 'new' or'delete', the signals and slots overhead is only responsible for avery small proportion of the complete function call costs. The same istrue whenever you do a system call in a slot; or indirectly call morethan ten functions. On an i586-500, you can emit around 2,000,000signals per second connected to one receiver, or around 1,200,000 persecond connected to two receivers. The simplicity and flexibility ofthe signals and slots mechanism is well worth the overhead, which yourusers won't even notice.
The meta object compiler (moc) parses the classdeclaration in a C++ file and generates C++ code that initializes themeta object. The meta object contains the names of all the signal andslot members, as well as pointers to these functions. (For moreinformation on Qt's Meta Object System, see Whydoesn't Qt use templates for signals and slots?.)
The meta object contains additional information such as the object's class name. You can also check if an objectinherits a specific class, for example:
Here is a simple commented example (code fragments from qlcdnumber.h ).
QLCDNumber inherits QObject, which has most of the signal/slotknowledge, via QFrame and QWidget, and #include's the relevantdeclarations.
Q_OBJECT is expanded by the preprocessor to declare several memberfunctions that are implemented by the moc; if you get compiler errorsalong the lines of 'virtual function QButton::className not defined'you have probably forgotten to run the moc or toinclude the moc output in the link command.
It's not obviously relevant to the moc, but if you inherit QWidget youalmost certainly want to have the parent and namearguments in your constructors, and pass them to the parentconstructor.
Some destructors and member functions are omitted here; the mocignores member functions.
QLCDNumber emits a signal when it is asked to show an impossiblevalue.
If you don't care about overflow, or you know that overflow cannotoccur, you can ignore the overflow() signal, i.e. don't connect it toany slot.
If, on the other hand, you want to call two different error functionswhen the number overflows, simply connect the signal to two differentslots. Qt will call both (in arbitrary order).
A slot is a receiving function, used to get information about statechanges in other widgets. QLCDNumber uses it, as the code aboveindicates, to set the displayed number. Since display() is partof the class's interface with the rest of the program, the slot ispublic.
Several of the example programs connect the newValue() signal of aQScrollBar to the display() slot, so the LCD number continuously showsthe value of the scroll bar.
Note that display() is overloaded; Qt will select the appropriate versionwhen you connect a signal to the slot. With callbacks, you'd have to findfive different names and keep track of the types yourself.
Some irrelevant member functions have been omitted from thisexample.